Ask the Metals Experts

FROM THE DESK OF THE METALS EXPERTS

Welcome to the MetalTek Blog.

As your Metals Partner, it is our goal to educate you on various casting processes. Feel free to browse around to learn more but if you have questions or need to submit an RFQ, please contact us. MetalTek International. Because You Demand More Than Metal.

10 Examples of Choosing the Right Metal Alloy for the Application

Posted by Dave Olsen on 10/22/19 3:06 PM

Sometimes particular alloys work in an application. Sometimes critical components and materials just don’t perform in a certain environment at all. There are factors like strength, resistance to corrosion, environmental temperature extremes, and many others, that help dictate which alloy to choose. Often a designer will select a familiar standard “workhorse” grade and keep moving, when time spent to better understand the environment and performance expectations can result in a healthier decision – one that reduces long term cost or improves performance.

Some examples where users analyzed the specific application and worked with MetalTek on selecting the correct alloy may shed some light on how that analysis provided a better material choice:

Metal Matrix Composite for Clutch Winch Drum Dramatically Increases Life
Naval supply replenishment vessels transfer equipment and supplies to military ships in service, while allowing for the relative motion of the ships. They employ high horsepower continuous slip air clutches to control the tension of connecting cables between the ships to allow for motion of the seas and relative movement of the vessels. The drums became unreliable and subject to significant wear when the change to non-asbestos brake material was implemented. MetalTek pioneered the development of a Metal Matrix Composite (MMC) centrifugally cast material for use in the friction drums. The MMC material used in the drum application virtually eliminated corrosion and drum wear. In addition, reduced hourly operating cost by 90%.

Read More

Topics: Alloy Selection, Physical Properties, Mechanical Properties, Casting Process

Material Applications: Corrosion Resistant Alloy Comparison Part: 2

Posted by Dave Olsen on 12/12/16 8:58 AM

 

Every material selection decision includes tradeoffs. Performance can come at a price.  But there is little sense in paying for capabilities that are not needed.  The following suggests a framework for selecting one of a family of corrosion-resistant materials from another.

Comparisons

Cost

Cost is rarely ignored, so it is helpful to compare certain corrosion-resistant alloys as multiples of cost of a generally recognized standard material, in this case 304 stainless. This analysis attempts to capture all-in cost including processing, and not just per-pound acquisition cost.

Read More

Topics: Alloy Selection, Corrosion Resistance, Physical Properties, Mechanical Properties

Material Applications: High Temperature Corrosion

Posted by Dave Olsen on 9/6/16 4:23 PM

As the performance demands on metals tend to increase as temperature increases, so do the types of corrosive attacks to which the metal is likely to be subjected. When we think of significant industries and applications that are most likely to face the combined effects of high temperature with a corrosive environment significant ones come to mind:

  • Gas and Steam Turbines
  • Heat Treating
  • Mineral Processing
  • Chemical Processing
  • Pulp and Paper
  • Waste Incineration
  • Fossil Fuel Power Generation

High-temperature corrosion performance is a form of corrosion that does not require the presence of a liquid electrolyte. Some important forms of high-temperature corrosion to consider that often cause equipment problems are:

  • Ash/Salt Deposit Corrosion
  • Carburization
  • Halogen Corrosion
  • Metal Dusting
  • Molten Metal Corrosion
  • Molten Salt Corrosion
  • Nitridation
  • Oxidation
  • Sulfidation
Read More

Topics: Alloy Selection, Corrosion Resistance, Physical Properties, Types Of Corrossion, Mechanical Properties

Material Applications: Wear Resistant Alloy Comparison

Posted by Dave Olsen on 9/6/16 4:13 PM

Overview

Every material selection decision includes tradeoffs. Performance can come at a price.  But there is little sense in paying for capabilities that are not needed.  The following suggests a framework for selecting one of a family of wear-resistant materials from another.

Comparisons

Cost

Cost is rarely ignored, so it is helpful to compare certain wear-resistant alloys as multiples of cost of a generally recognized standard material, in this case Hadfield Mn steel. This analysis attempts to capture all-in cost including processing, and not just per-pound acquisition cost.

Read More

Topics: Alloy Selection, Wear Resistance, Physical Properties, Mechanical Properties

Material Applications: Wear Resistance

Posted by Dave Olsen on 9/6/16 3:46 PM

Wear is probably the most common cause of material replacement in industry. Bushings and bearings are common examples of components which must provide metal-to-metal wear resistance.  Wear is a universal constant in moving equipment in all applications.

In some applications like food processing the use of certain materials that provide superior wear resistance (copper-based alloys, for example) is restricted or prohibited. In these applications, specific alloys have been developed to eliminate certain types of wear, like galling, without reacting with the environment. In the case of food processing applications, for example, a series of “dairy metals” has been developed to prevent these types of wear.  When corrosion-resistance is the primary concern, high-performance cobalt-based alloys are often specified.

Read More

Topics: Alloy Selection, Wear Resistance, Physical Properties, Mechanical Properties

MetalTek International
Download Our Alloy Guide 
Download Our Where Used Guide 

Follow Us