Ask the Metals Experts

FROM THE DESK OF THE METALS EXPERTS

Welcome to the MetalTek Blog.

As your Metals Partner, it is our goal to educate you on various casting processes. Feel free to browse around to learn more but if you have questions or need to submit an RFQ, please contact us. MetalTek International. Because You Demand More Than Metal.

What Is Non-Ferrous Metal?

Posted by Dave Olsen on 11/4/19 3:19 PM

Non-ferrous metals or alloys are materials that are not iron based like their ferrous counterparts. One of the more common groups of non-ferrous materials are copper-based alloys such as bronze and brass. While it is common to use brass and bronze interchangeably, there is a difference.

Brasses are copper-based alloys which have zinc as the principle alloying element. In some cases, small amounts of nickel, aluminum, iron, or silicon may be also present. A good example is C85500 (also known as “60-40 yellow brass”). This alloy contains up to 63% copper, 0.8% aluminum, and around 40% zinc. Since the zinc content is high, the material is classified as brass.

Bronzes are copper-based alloys where the major alloying element is not zinc or nickel. The term bronze is used with a preceding modifier that describes the type of bronze it is, by indicating the major alloying element(s). For example, MTEK 83-7-7-3/C93200 is a high lead tin bronze because it contains 7% tin and 7% lead in addition to 83% copper and 3% zinc. Also, MTEK 175/C95400 is called an aluminum bronze because it is made up of 11% aluminum in addition to 85% copper and 4% iron.

Common bronze families or alloy groups are: Aluminum Bronze, Manganese Bronze, Tin Bronze, Leaded Tin Bronze, and High Copper Alloys.

Read More

Topics: Copper Based Alloys, Non-Ferrous, Alloy Selection, Bronze, Wear Resistance, Wear

MetalTek Announces E.J. Kubick as CEO as Part of Planned Succession

Posted by Dave Olsen on 10/28/19 2:26 PM

Press Release

MetalTek International today announced that Chief Operating Officer E.J. Kubick has replaced Bob Smickley as Chief Executive Officer. This is part of the multiyear succession plan that began with Mr. Kubick’s appointment to the COO role in January 2017. Mr. Kubick and Mr. Smickley will both continue to serve on MetalTek’s Board of Directors.

Mr. Kubick joined MetalTek in 2003 and has served in a series of operational and leadership roles of increasing responsibility. Under his leadership MetalTek expanded its capabilities in centrifugal, sand, and investment casting while strengthening its focus on operational excellence.

Read More

Topics: Press Release

10 Examples of Choosing the Right Metal Alloy for the Application

Posted by Dave Olsen on 10/22/19 3:06 PM

Sometimes particular alloys work in an application. Sometimes critical components and materials just don’t perform in a certain environment at all. There are factors like strength, resistance to corrosion, environmental temperature extremes, and many others, that help dictate which alloy to choose. Often a designer will select a familiar standard “workhorse” grade and keep moving, when time spent to better understand the environment and performance expectations can result in a healthier decision – one that reduces long term cost or improves performance.

Some examples where users analyzed the specific application and worked with MetalTek on selecting the correct alloy may shed some light on how that analysis provided a better material choice:

Metal Matrix Composite for Clutch Winch Drum Dramatically Increases Life
Naval supply replenishment vessels transfer equipment and supplies to military ships in service, while allowing for the relative motion of the ships. They employ high horsepower continuous slip air clutches to control the tension of connecting cables between the ships to allow for motion of the seas and relative movement of the vessels. The drums became unreliable and subject to significant wear when the change to non-asbestos brake material was implemented. MetalTek pioneered the development of a Metal Matrix Composite (MMC) centrifugally cast material for use in the friction drums. The MMC material used in the drum application virtually eliminated corrosion and drum wear. In addition, reduced hourly operating cost by 90%.

Read More

Topics: Alloy Selection, Physical Properties, Mechanical Properties, Casting Process

Basics of Casting 101

Posted by Dave Olsen on 10/19/18 4:45 PM

MetalTek offers more metal casting process diversity. Your ability to source centrifugal, sand, investment, HPLT, or continuous cast products from a single company is not available anywhere else in the world. Not sure which precision casting process is right for your components or application? Read the below article on the basics of casting and feel free to contact us if you have questions.  We would love to become your metals partner Because You Demand More Than Metal.

Read More

Topics: Investment Casting, Sand Casting, Centrifugal Casting, Casting Process, Lost Wax Casting

History of Metal Casting

Posted by Dave Olsen on 10/16/18 1:56 PM

Today, metal casting is a complex and intricate process which requires exact chemistry and flawless execution. While current methods may be relatively new when compared to the history of human civilization, the first casting of metals can actually be traced all the way back to around 4000 BC. In those times, gold was the first metal to be cast because of its malleability, and back then, metal from tools and decoration was reused because of the complications of obtaining pure ore. However, a copper frog is the oldest existing casting currently known; it is estimated that it was made in 3200 BC in Mesopotamia (present-day Iraq). Bronze then became the metal of choice to cast with because its rigidity compared to gold, and it was melted and cast into various tools and weapons by way of permanent stone molds. The process of casting made its way to Egypt by 2800 BC, and effectively performing this process was tremendously influential on their gain of power during the Bronze Age. Around 1300 BC, the Shang Dynasty in China were the first to utilize sand casting when melting metals. Then around 500 BC, the Zhou Dynasty introduced cast iron to the world, but it was used mostly for farmers. Cast iron did not become a military tool or decoration until the Qin Dynasty almost 300 years later. 

Fast forward almost 1000 years, religion played a major role in advancing and innovating foundry technology during that time. Extraordinary evolution came from the construction of cathedrals and churches, melting and mold-making processes advanced rapidly to keep up with the demand of the dominant Catholic church. This also marked the boundary of the period between casting for the purpose of art and viewing casting as a technology with unknown potential. It was not too long after the advancements of bell casting that, ironically, a monk in Ghent (present-day Belgium) was the first to cast a cannon in 1313 with the same technology. Over 150 years after the first cast cannon, Vannoccio Biringuccio, also known as the father of the foundry industry, recorded the first written account of casting and foundry practices. His work, De Le Pirotechnia, was separated into 10 sections that covered many subjects including minerals, assaying, smelting, alloys, casting, as well as alchemy; it is one of the oldest technical documents still around from the Renaissance era.

Read More

Topics: Investment Casting, Sand Casting, Centrifugal Casting, Continuous Casting, Casting Process, Lost Wax Casting, History

MetalTek International
Download Our Alloy Guide 
Download Our Where Used Guide 

Follow Us